Dns имя



DNS
Название Domain Name System
Уровень (по модели OSI) Прикладной
Семейство TCP/IP
Порт/ID 53/TCP, 53/UDP
Назначение протокола Разрешение доменных имён
Спецификация RFC 1034, RFC 1035 / STD 13
Основные реализации (клиенты) Встроен во все сетевые ОС
Основные реализации (серверы) BIND, NSD, PowerDNS или Microsoft DNS Server

DNS (англ. Domain Name System «система доменных имён») — компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста (компьютера или устройства), получения информации о маршрутизации почты, обслуживающих узлах для протоколов в домене (SRV-запись).

Распределённая база данных DNS поддерживается с помощью иерархии DNS-серверов, взаимодействующих по определённому протоколу.

Основой DNS является представление об иерархической структуре доменного имени и зонах. Каждый сервер, отвечающий за имя, может делегировать ответственность за дальнейшую часть домена другому серверу (с административной точки зрения — другой организации или человеку), что позволяет возложить ответственность за актуальность информации на серверы различных организаций (людей), отвечающих только за «свою» часть доменного имени.

Начиная с 2010 года в систему DNS внедряются средства проверки целостности передаваемых данных, называемые DNS Security Extensions (DNSSEC). Передаваемые данные не шифруются, но их достоверность проверяется криптографическими способами. Внедряемый стандарт DANE обеспечивает передачу средствами DNS достоверной криптографической информации (сертификатов), используемых для установления безопасных и защищённых соединений транспортного и прикладного уровней.

Ключевые характеристики DNS[править | править код]

DNS обладает следующими характеристиками:


  • Распределённость администрирования. Ответственность за разные части иерархической структуры несут разные люди или организации.
  • Распределённость хранения информации. Каждый узел сети в обязательном порядке должен хранить только те данные, которые входят в его зону ответственности, и (возможно) адреса корневых DNS-серверов.
  • Кэширование информации. Узел может хранить некоторое количество данных не из своей зоны ответственности для уменьшения нагрузки на сеть.
  • Иерархическая структура, в которой все узлы объединены в дерево, и каждый узел может или самостоятельно определять работу нижестоящих узлов, или делегировать (передавать) их другим узлам.
  • Резервирование. За хранение и обслуживание своих узлов (зон) отвечают (обычно) несколько серверов, разделённые как физически, так и логически, что обеспечивает сохранность данных и продолжение работы даже в случае сбоя одного из узлов.

DNS важна для работы Интернета, так как для соединения с узлом необходима информация о его IP-адресе, а для людей проще запоминать буквенные (обычно осмысленные) адреса, чем последовательность цифр IP-адреса. В некоторых случаях это позволяет использовать виртуальные серверы, например, HTTP-серверы, различая их по имени запроса. Первоначально преобразование между доменными и IP-адресами производилось с использованием специального текстового файла hosts, который составлялся централизованно и автоматически рассылался на каждую из машин в своей локальной сети. С ростом Сети возникла необходимость в эффективном, автоматизированном механизме, которым и стала DNS.


DNS была разработана Полом Мокапетрисом в 1983 году; оригинальное описание механизмов работы содержится в RFC 882 и RFC 883. В 1987 публикация RFC 1034 и RFC 1035 изменила спецификацию DNS и отменила RFC 882, RFC 883 и RFC 973 как устаревшие.

Дополнительные возможности[править | править код]

  • поддержка динамических обновлений
  • защита данных (DNSSEC) и транзакций (TSIG)
  • поддержка различных типов информации

История[править | править код]

Использование более простого и запоминающегося имени вместо числового адреса хоста относится к эпохе ARPANET. Стэнфордский исследовательский институт (теперь SRI International) поддерживал текстовый файл HOSTS.TXT, который сопоставлял имена узлов с числовыми адресами компьютеров в ARPANET. Поддержание числовых адресов, называемых списком присвоенных номеров, было обработано Джоном Постелем в Институте информационных наук Университета Южной Калифорнии (ISI), команда которого тесно сотрудничала с НИИ.[1]

Адреса назначались вручную. Чтобы запросить имя хоста и адрес и добавить компьютер в главный файл, пользователи связывались с сетевым информационным центром (NIC) SRI, руководимым Элизабет Фейнлер, по телефону в рабочее время.


К началу 1980-х годов поддержание единой централизованной таблицы хостов стало медленным и громоздким, а развивающейся сети требовалась автоматическая система именования для решения технических и кадровых вопросов. Постел поставил перед собой задачу выработать компромисс между пятью конкурирующими предложениями для решения задачи, сформулированной Полом Мокапетрисом. Мокапетрис вместо этого создал концепцию иерархической системы доменных имен.

Рабочая группа IETF опубликовала оригинальные спецификации в RFC 882 и RFC 883 в ноябре 1983 года.

В 1984 году четыре студента UC Berkeley, Дуглас Терри, Марк Пейнтер, Дэвид Риггл и Сонгниан Чжоу, написали первую версию сервера имен BIND (Berkeley Internet Name Daemon). В 1985 году Кевин Данлэп из DEC существенно пересмотрел реализацию DNS. Майк Карел, Фил Альмквист и Пол Викси поддерживали BIND с тех пор. В начале 1990-х годов BIND был перенесен на платформу Windows NT. Он широко распространен, особенно в Unix-системах, и по-прежнему является наиболее широко используемым программным обеспечением DNS в Интернете.

В ноябре 1987 года были приняты спецификации DNS — RFC 1034 и RFC 1035. После этого были приняты сотни RFC, изменяющих и дополняющих DNS.

Проблемы с безопасностью[править | править код]

Первоначально проблемы безопасности не были основными соображениями при разработке программного обеспечения DNS или любого программного обеспечения для развёртывания в раннем Интернете, поскольку сеть не была открыта для широкой общественности. Однако рост Интернета в коммерческом секторе в 1990-х годах изменил требования к мерам безопасности для защиты целостности данных и аутентификации пользователей.


Несколько уязвимостей были обнаружены и использованы злоумышленниками. Одной из таких проблем является отравление кэша DNS, в котором данные распространяются на кэширующие преобразователи под предлогом того, что они являются авторитетным сервером происхождения, тем самым загрязняя хранилище данных потенциально ложной информацией и длительными сроками действия (время жизни). Впоследствии, запросы легитимных приложений могут быть перенаправлены на сетевые хосты, контролируемые злоумышленником.

DNS-ответы ранее не имели криптографической подписи, что давало возможность для множества вариантов атаки. Современные расширения системы безопасности доменных имен (DNSSEC) изменяют DNS, чтобы добавить поддержку криптографически подписанных ответов. Другие расширения, такие как TSIG, добавляют поддержку криптографической аутентификации между доверенными одноранговыми узлами и обычно используются для авторизации передачи зоны или операций динамического обновления.

Некоторые доменные имена могут использоваться для достижения эффектов спуфинга. Например, paypal.com и paypa1.com — это разные имена, но пользователи могут не различать их в графическом пользовательском интерфейсе в зависимости от выбранного шрифта пользователя. Во многих шрифтах буква l и цифра 1 выглядят очень похожими или даже идентичными. Эта проблема остро стоит в системах, которые поддерживают интернационализированные доменные имена, поскольку многие коды символов в ISO 10646 могут отображаться на типичных экранах компьютеров. Эта уязвимость иногда используется в фишинге.


Для подтверждения результатов DNS также могут использоваться такие методы, как обратный DNS с подтверждением прямых записей, но криптографически достоверными они не являются; при этом не учитывается вариант подмены маршрутной информации (англ. BGP hijacking).

Терминология и принципы работы[править | править код]

Ключевыми понятиями DNS являются:

  • Доме́н (англ. domain «область») — узел в дереве имён, вместе со всеми подчинёнными ему узлами (если таковые имеются), то есть именованная ветвь или поддерево в дереве имён. Структура доменного имени отражает порядок следования узлов в иерархии; доменное имя читается слева направо от младших доменов к доменам высшего уровня (в порядке повышения значимости): вверху находится корневой домен (имеющий идентификатор «.»(точка)), ниже идут домены первого уровня (доменные зоны), затем — домены второго уровня, третьего и т. д. (например, для адреса ru.wikipedia.org. домен первого уровня — org, второго — wikipedia, третьего — ru). DNS позволяет не указывать точку корневого домена.

  • Поддомен (англ. subdomain) — подчинённый домен (например, wikipedia.org — поддомен домена org, а ru.wikipedia.org — домена wikipedia.org). Теоретически такое деление может достигать глубины 127 уровней, а каждая метка может содержать до 63 символов, пока общая длина вместе с точками не достигнет 254 символов. Но на практике регистраторы доменных имён используют более строгие ограничения. Например, если у вас есть домен вида mydomain.ru, вы можете создать для него различные поддомены вида mysite1.mydomain.ru, mysite2.mydomain.ru и т. д.
  • Ресурсная запись — единица хранения и передачи информации в DNS. Каждая ресурсная запись имеет имя (то есть привязана к определённому доменному имени, узлу в дереве имён), тип и поле данных, формат и содержание которого зависит от типа.
  • Зона — часть дерева доменных имён (включая ресурсные записи), размещаемая как единое целое на некотором сервере доменных имён (DNS-сервере, см. ниже), а чаще — одновременно на нескольких серверах (см. ниже). Целью выделения части дерева в отдельную зону является передача ответственности (см. ниже) за соответствующий домен другому лицу или организации. Это называется делегированием (см. ниже). Как связная часть дерева, зона внутри тоже представляет собой дерево.

    ли рассматривать пространство имён DNS как структуру из зон, а не отдельных узлов/имён, тоже получается дерево; оправданно говорить о родительских и дочерних зонах, о старших и подчинённых. На практике большинство зон 0-го и 1-го уровня (‘.’, ru, com, …) состоят из единственного узла, которому непосредственно подчиняются дочерние зоны. В больших корпоративных доменах (2-го и более уровней) иногда встречается образование дополнительных подчинённых уровней без выделения их в дочерние зоны.
  • Делегирование — операция передачи ответственности за часть дерева доменных имён другому лицу или организации. За счёт делегирования в DNS обеспечивается распределённость администрирования и хранения. Технически делегирование выражается в выделении этой части дерева в отдельную зону, и размещении этой зоны на DNS-сервере (см. ниже), управляемом этим лицом или организацией. При этом в родительскую зону включаются «склеивающие» ресурсные записи (NS и А), содержащие указатели на DNS-сервера дочерней зоны, а вся остальная информация, относящаяся к дочерней зоне, хранится уже на DNS-серверах дочерней зоны.
  • DNS-сервер — специализированное ПО для обслуживания DNS, а также компьютер, на котором это ПО выполняется. DNS-сервер может быть ответственным за некоторые зоны и/или может перенаправлять запросы вышестоящим серверам.
  • DNS-клиент — специализированная библиотека (или программа) для работы с DNS. В ряде случаев DNS-сервер выступает в роли DNS-клиента.

  • Авторитетность (англ. authoritative) — признак размещения зоны на DNS-сервере. Ответы DNS-сервера могут быть двух типов: авторитетные (когда сервер заявляет, что сам отвечает за зону) и неавторитетные (англ. Non-authoritative), когда сервер обрабатывает запрос, и возвращает ответ других серверов. В некоторых случаях вместо передачи запроса дальше DNS-сервер может вернуть уже известное ему (по запросам ранее) значение (режим кеширования).
  • DNS-запрос (англ. DNS query) — запрос от клиента (или сервера) серверу. Запрос может быть рекурсивным или нерекурсивным (см. Рекурсия).

Система DNS содержит иерархию DNS-серверов, соответствующую иерархии зон. Каждая зона поддерживается как минимум одним авторитетным сервером DNS (от англ. authoritative — авторитетный), на котором расположена информация о домене.

Имя и IP-адрес не тождественны — один IP-адрес может иметь множество имён, что позволяет поддерживать на одном компьютере множество веб-сайтов (это называется виртуальный хостинг). Обратное тоже справедливо — одному имени может быть сопоставлено множество IP-адресов: это позволяет создавать балансировку нагрузки.

Для повышения устойчивости системы используется множество серверов, содержащих идентичную информацию, а в протоколе есть средства, позволяющие поддерживать синхронность информации, расположенной на разных серверах. Существует 13 корневых серверов, их адреса практически не изменяются.[2]


Протокол DNS использует для работы TCP- или UDP-порт 53 для ответов на запросы. Традиционно запросы и ответы отправляются в виде одной UDP-датаграммы. TCP используется, когда размер данных ответа превышает 512 байт, и для AXFR-запросов.

Рекурсия[править | править код]

Термином рекурсия в DNS обозначают алгоритм поведения DNS-сервера: выполнение от имени клиента полный поиск нужной информации во всей системе DNS, при необходимости обращаясь к другим DNS-серверам.

DNS-запрос может быть рекурсивным — требующим полного поиска, — и нерекурсивным (или итеративным) — не требующим полного поиска.

Аналогично — DNS-сервер может быть рекурсивным (умеющим выполнять полный поиск) и нерекурсивным (не умеющим выполнять полный поиск). Некоторые программы DNS-серверов, например, BIND, можно сконфигурировать так, чтобы запросы одних клиентов выполнялись рекурсивно, а запросы других — нерекурсивно.

При ответе на нерекурсивный запрос, а также при неумении или запрете выполнять рекурсивные запросы, DNS-сервер либо возвращает данные о зоне, за которую он ответственен, либо возвращает ошибку. Настройки нерекурсивного сервера, когда при ответе выдаются адреса серверов, которые обладают большим объёмом информации о запрошенной зоне, чем отвечающий сервер (чаще всего — адреса корневых серверов), являются некорректными, и такой сервер может быть использован для организации DoS-атак.

В случае рекурсивного запроса DNS-сервер опрашивает серверы (в порядке убывания уровня зон в имени), пока не найдёт ответ или не обнаружит, что домен не существует (на практике поиск начинается с наиболее близких к искомому DNS-серверов, если информация о них есть в кэше и не устарела, сервер может не запрашивать другие DNS-серверы).

Рассмотрим на примере работу всей системы.

Предположим, мы набрали в браузере адрес ru.wikipedia.org. Браузер спрашивает у сервера DNS: «какой IP-адрес у ru.wikipedia.org»? Однако сервер DNS может ничего не знать не только о запрошенном имени, но и даже обо всём домене wikipedia.org. В этом случае сервер обращается к корневому серверу — например, 198.41.0.4. Этот сервер сообщает — «У меня нет информации о данном адресе, но я знаю, что 204.74.112.1 является ответственным за зону org.» Тогда сервер DNS направляет свой запрос к 204.74.112.1, но тот отвечает «У меня нет информации о данном сервере, но я знаю, что 207.142.131.234 является ответственным за зону wikipedia.org.» Наконец, тот же запрос отправляется к третьему DNS-серверу и получает ответ — IP-адрес, который и передаётся клиенту — браузеру.

В данном случае при разрешении имени, то есть в процессе поиска IP по имени:

  • браузер отправил известному ему DNS-серверу рекурсивный запрос — в ответ на такой тип запроса сервер обязан вернуть «готовый результат», то есть IP-адрес, либо пустой ответ и код ошибки NXDOMAIN;
  • DNS-сервер, получивший запрос от браузера, последовательно отправлял нерекурсивные запросы, на которые получал от других DNS-серверов ответы, пока не получил ответ от сервера, ответственного за запрошенную зону;
  • остальные упоминавшиеся DNS-серверы обрабатывали запросы нерекурсивно (и, скорее всего, не стали бы обрабатывать запросы рекурсивно, даже если бы такое требование стояло в запросе).

Иногда допускается, чтобы запрошенный сервер передавал рекурсивный запрос «вышестоящему» DNS-серверу и дожидался готового ответа.

При рекурсивной обработке запросов все ответы проходят через DNS-сервер, и он получает возможность кэшировать их. Повторный запрос на те же имена обычно не идёт дальше кэша сервера, обращения к другим серверам не происходит вообще. Допустимое время хранения ответов в кэше приходит вместе с ответами (поле TTL ресурсной записи).

Рекурсивные запросы требуют больше ресурсов от сервера (и создают больше трафика), так что обычно принимаются от «известных» владельцу сервера узлов (например, провайдер предоставляет возможность делать рекурсивные запросы только своим клиентам, в корпоративной сети рекурсивные запросы принимаются только из локального сегмента). Нерекурсивные запросы обычно принимаются ото всех узлов сети (и содержательный ответ даётся только на запросы о зоне, которая размещена на узле, на DNS-запрос о других зонах обычно возвращаются адреса других серверов).

Обратный DNS-запрос[править | править код]

DNS используется в первую очередь для преобразования символьных имён в IP-адреса, но он также может выполнять обратный процесс. Для этого используются уже имеющиеся средства DNS. Дело в том, что с записью DNS могут быть сопоставлены различные данные, в том числе и какое-либо символьное имя. Существует специальный домен in-addr.arpa, записи в котором используются для преобразования IP-адресов в символьные имена. Например, для получения DNS-имени для адреса 11.22.33.44 можно запросить у DNS-сервера запись 44.33.22.11.in-addr.arpa, и тот вернёт соответствующее символьное имя. Обратный порядок записи частей IP-адреса объясняется тем, что в IP-адресах старшие биты расположены в начале, а в символьных DNS-именах старшие (находящиеся ближе к корню) части расположены в конце.

Записи DNS[править | править код]

Записи DNS, или ресурсные записи (англ. resource records, RR), — единицы хранения и передачи информации в DNS. Каждая ресурсная запись состоит из следующих полей[3]:

  • имя (NAME) — доменное имя, к которому привязана или которому «принадлежит» данная ресурсная запись,
  • тип (TYPE) ресурсной записи — определяет формат и назначение данной ресурсной записи,
  • класс (CLASS) ресурсной записи; теоретически считается, что DNS может использоваться не только с TCP/IP, но и с другими типами сетей, код в поле класс определяет тип сети[4],
  • TTL (Time To Live) — допустимое время хранения данной ресурсной записи в кэше неответственного DNS-сервера,
  • длина поля данных (RDLEN),
  • поле данных (RDATA), формат и содержание которого зависит от типа записи.

Наиболее важные типы DNS-записей:

  • Запись A (address record) или запись адреса связывает имя хоста с адресом протокола IPv4. Например, запрос A-записи на имя referrals.icann.org вернёт его IPv4-адрес — 192.0.34.164.
  • Запись AAAA (IPv6 address record) связывает имя хоста с адресом протокола IPv6. Например, запрос AAAA-записи на имя K.ROOT-SERVERS.NET вернёт его IPv6-адрес — 2001:7fd::1.
  • Запись CNAME (canonical name record) или каноническая запись имени (псевдоним) используется для перенаправления на другое имя.
  • Запись MX (mail exchange) или почтовый обменник указывает сервер(ы) обмена почтой для данного домена.
  • Запись NS (name server) указывает на DNS-сервер для данного домена.
  • Запись PTR (pointer[5][6]) обратная DNS-запись или запись указателя связывает IP-адрес хоста с его каноническим именем. Запрос в домене in-addr.arpa на IP-адрес хоста в reverse-форме вернёт имя (FQDN) данного хоста (см. Обратный DNS-запрос). Например (на момент написания), для IP-адреса 192.0.34.164 запрос записи PTR 164.34.0.192.in-addr.arpa вернёт его каноническое имя referrals.icann.org. В целях уменьшения объёма нежелательной корреспонденции (спама) многие серверы-получатели электронной почты могут проверять наличие PTR-записи для хоста, с которого происходит отправка. В этом случае PTR-запись для IP-адреса должна соответствовать имени отправляющего почтового сервера, которым он представляется в процессе SMTP-сессии.
  • Запись SOA (Start of Authority) или начальная запись зоны указывает, на каком сервере хранится эталонная информация о данном домене, содержит контактную информацию лица, ответственного за данную зону, тайминги (параметры времени) кеширования зонной информации и взаимодействия DNS-серверов.
  • SRV-запись (server selection) указывает на серверы для сервисов, используется, в частности, для Jabber и Active Directory.

Зарезервированные доменные имена[править | править код]

Документ RFC 2606 (Reserved Top Level DNS Names — Зарезервированные имена доменов верхнего уровня) определяет названия доменов, которые следует использовать в качестве примеров (например, в документации), а также для тестирования. Кроме example.com, example.org и example.net, в эту группу также входят test, invalid и др.

Интернациональные доменные имена[править | править код]

Доменное имя может состоять только из ограниченного набора ASCII-символов, позволяя набрать адрес домена независимо от языка пользователя. ICANN утвердил основанную на Punycode систему IDNA, преобразующую любую строку в кодировке Unicode в допустимый DNS набор символов.

Программное обеспечение DNS[править | править код]

Серверы имен:

  • BIND (Berkeley Internet Name Domain) [1]
  • djbdns (Daniel J. Bernstein’s DNS) [2]
  • Dnsmasq [3]
  • MaraDNS [4]
  • NSD (Name Server Daemon) [5]
  • PowerDNS [6]
  • OpenDNS [7]
  • Microsoft DNS Server (в серверных версиях операционных систем Windows NT)
  • MyDNS [8]

См. также[править | править код]

  • Атака Каминского
  • Альтернативные корневые серверы DNS
  • OpenDNS
  • Google Public DNS
  • Яндекс.DNS
  • Киберсквоттинг
  • Тайпсквоттинг
  • Динамический DNS
  • Round robin DNS — распределение нагрузки между одинаковыми серверами.
  • ICANN
  • DNSSEC
  • DNS-клиент
  • DNS-сервер
  • Nslookup

Ссылки[править | править код]

  • DNS Resources Directory  (англ.)
  • Ресурсы, посвящённые DNS & BIND  (англ.)
  • Общество CircleID DNS  (англ.)
  • Повышение безопасности DNS (DNSSEC)  (англ.)
  • Рабочий комитет IETF занимающийся разработкой расширенной спецификации DNS (DNSEXT)  (англ.)
  • Сайт корневых DNS-серверов  (англ.)
  • Просмотр DNS-записей домена
  • Веб-инструменты для DNS, каталог на сайте dmoz.org  (англ.)

Статьи[править | править код]

  • Обзор схем и типов DNS-атак

ru.wikipedia.org

Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста, так и средствами централизованной службы. На раннем этапе развития Internet на каждом хосте вручную создавался текстовый файл с известным именем hosts. Этот файл состоял из некоторого количества строк, каждая из которых содержала одну пару «IP-адрес — доменное имя», например 102.54.94.97 — rhino.acme.com.

По мере роста Internet файлы hosts также росли, и создание масштабируемого решения для разрешения имен стало необходимостью.

Таким решением стала специальная служба — система доменных имен (Domain Name System, DNS). DNS — это централизованная служба, основанная на распределенной базе отображений «доменное имя — IP-адрес». Служба DNS использует в своей работе протокол типа «клиент-сервер». В нем определены DNS-серверы и DNS-кли-енты. DNS-серверы поддерживают распределенную базу отображений, а DNS-клиен-ты обращаются к серверам с запросами о разрешении доменного имени в IP-адрес.

Служба DNS использует текстовые файлы почти такого формата, как и файл hosts, и эти файлы администратор также подготавливает вручную. Однако служба DNS опирается на иерархию доменов, и каждый сервер службы DNS хранит только часть имен сети, а не все имена, как это происходит при использовании файлов hosts. При росте количества узлов в сети проблема масштабирования решается созданием новых доменов и поддоменов имен и добавлением в службу DNS новых серверов.

Для каждого домена имен создается свой DNS-сервер. Этот сервер может хранить отображения «доменное имя — IP-адрес» для всего домена, включая все его поддомены. Однако при этом решение оказывается плохо масштабируемым, так как при добавлении новых поддоменов нагрузка на этот сервер может превысить его возможности. Чаще сервер домена хранит только имена, которые заканчиваются на следующем ниже уровне иерархии по сравнению с именем домена. (Аналогично каталогу файловой системы, который содержит записи о файлах и подкаталогах, непосредственно в него «входящих».) Именно при такой организации службы DNS нагрузка по разрешению имен распределяется более-менее равномерно между всеми DNS-серверами сети. Например, в первом случае DNS-сервер домена mmtru будет хранить отображения для всех имен, заканчивающихся на mmt.ru: wwwl.zil.mmt.ru, ftp.zil.mmt.ru, mail.mmt.ru и т. д. Во втором случае этот сервер хранит отображения только имен типа mail.mmt.ru, www.mmt.ru, а все остальные отображения должны храниться на DNS-сервере поддомена zil.

Каждый DNS-сервер кроме таблицы отображений имен содержит ссылки на DNS-серверы своих поддоменов. Эти ссылки связывают отдельные DNS-серверы в единую службу DNS. Ссылки представляют собой IP-адреса соответствующих серверов. Для обслуживания корневого домена выделено несколько дублирующих друг друга DNS-серверов, IP-адреса которых являются широко известными (их можно узнать, например, в InterNIC).

Процедура разрешения DNS-имени во многом аналогична процедуре поиска файловой системой адреса файла по его символьному имени. Действительно, в обоих случаях составное имя отражает иерархическую структуру организации соответствующих справочников — каталогов файлов или таблиц DNS. Здесь домен и доменный DNS-сервер являются аналогом каталога файловой системы. Для доменных имен, так же как и для символьных имен файлов, характерна независимость именования от физического местоположения.

Процедура поиска адреса файла по символьному имени заключается в последовательном просмотре каталогов, начиная с корневого. При этом предварительно проверяется кэш и текущий каталог. Для определения IP-адреса по доменному имени также необходимо просмотреть все DNS-серверы, обслуживающие цепочку поддоменов, входящих в имя хоста, начиная с корневого домена. Существенным же отличием является то, что файловая система расположена на одном компьютере, а служба DNS по своей природе является распределенной.

Существуют две основные схемы разрешения DNS-имен. В первом варианте работу по поиску IP-адреса координирует DNS-клиент:

  • DNS-клиент обращается к корневому DNS-серверу с указанием полного доменного имени;

  • DNS-сервер отвечает, указывая адрес следующего DNS-сервера, обслуживающего домен верхнего уровня, заданный в старшей части запрошенного имени;

  • DNS-клиент делает запрос следующего DNS-сервера, который отсылает его к DNS-серверу нужного поддомена, и т. д., пока не будет найден DNS-сервер, в котором хранится соответствие запрошенного имени IP-адресу. Этот сервер дает окончательный ответ клиенту.

Такая схема взаимодействия называется нерекурсивной или итеративной, когда клиент сам итеративно выполняет последовательность запросов к разным серверам имен. Так как эта схема загружает клиента достаточно сложной работой, то она применяется редко.

Во втором варианте реализуется рекурсивная процедура:

  • DNS-клиент запрашивает локальный DNS-сервер, то есть тот сервер, который обслуживает поддомен, к которому принадлежит имя клиента;

  • если локальный DNS-сервер знает ответ, то он сразу же возвращает его клиенту; это может соответствовать случаю, когда запрошенное имя входит в тот же поддомен, что и имя клиента, а также может соответствовать случаю, когда сервер уже узнавал данное соответствие для другого клиента и сохранил его в своем кэше;

  • если же локальный сервер не знает ответ, то он выполняет итеративные запросы к корневому серверу и т. д. точно так же, как это делал клиент в первом варианте; получив ответ, он передает его клиенту, который все это время просто ждал его от своего локального DNS-сервера.

В этой схеме клиент перепоручает работу своему серверу, поэтому схема называется косвенной или рекурсивной. Практически все DNS-клиенты используют рекурсивную процедуру.

Для ускорения поиска IP-адресов DNS-серверы широко применяют процедуру кэширования проходящих через них ответов. Чтобы служба DNS могла оперативно отрабатывать изменения, происходящие в сети, ответы кэшируются на определенное время — обычно от нескольких часов до нескольких дней.

Выводы

  • В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена. Все эти типы адресов присваиваются узлам составной сети независимо друг от друга.

  • IP-адрес имеет длину 4 байта и состоит из номера сети и номера узла. Для определения границы, отделяющей номер сети от номера узла, реализуются два подхода. Первый основан на понятии класса адреса, второй — на использовании масок.

  • Класс адреса определяется значениями нескольких первых бит адреса. В адресах класса А под номер сети отводится один байт, а остальные три байта — под номер узла, поэтому они используются в самых больших сетях. Для небольших сетей больше подходят адреса класса С, в которых номер сети занимает три байта, а для нумерации узлов может быть использован только один байт. Промежуточное положение занимают адреса класса В.

  • Другой способ определения, какая часть адреса является номером сети, а какая номером узла, основан на использовании маски. Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые в IP-адресе должны интерпретироваться как номер сети.

  • Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно.

  • Процесс распределения IP-адресов по узлам сети может быть автоматизирован с помощью протокола DHCP.

  • Установление соответствия между IP-адресом и аппаратным адресом (чаще всего МАС — адресом) осуществляется протоколом разрешения адресов ARP, который для этой цели просматривает ARP-таблицы. Если нужный адрес отсутствует, то выполняется широковещательный ARP-запрос.

  • В стеке TCP/IP применяется доменная система символьных имен, которая имеет иерархическую древовидную структуру, допускающую использование в имени произвольного количества составных частей. Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен. Доменные имена назначаются централизованно, если сеть является частью Internet, в противном случае — локально.

  • Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста с использованием файла hosts, так и с помощью централизованной службы DNS, основанной на распределенной базе отображений «доменное имя — IP-адрес».

Выводы

  • Протокол IP решает задачу доставки сообщений между узлами составной сети. Протокол IP относится к протоколам без установления соединений, поэтому он не дает никаких гарантий надежной доставки сообщений. Все вопросы обеспечения надежности доставки данных в составной сети в стеке TCP/IP решает протокол TCP, основанный на установлении логических соединений между взаимодействующими процессами.

  • IP-пакет состоит из заголовка и поля данных. Максимальная длина пакета 65 535 байт, Заголовок обычно имеет длину 20 байт и содержит информацию о сетевых адресах отправителя и получателя, о параметрах фрагментации, о времени жизни пакета, о контрольной сумме и некоторых других. В поле данных IP-пакета находятся сообщения более высокого уровня, например TCP или UDP.

  • Вид таблицы IP-маршрутизации зависит от конкретной реализации маршрутизатора, но, несмотря на достаточно сильные внешние различия, в таблицах всех типов маршрутизаторов есть все ключевые поля, необходимые для выполнения маршрутизации.

  • Существует несколько источников, поставляющих записи в таблицу маршрутизации. Во-первых, при инициализации программное обеспечение стека TCP/ IP заносит в таблицу записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, а также записи об особых адресах типа 127.0.0.0. Во-вторых, администратор вручную заносит статические записи о специфичных маршрутах или о маршрутизаторе по умолчанию. В-третьих, протоколы маршрутизации автоматически заносят в таблицу динамические записи о имеющихся маршрутах.

  • Эффективным средством структуризации IP-сетей являются маски. Маски позволяют разделить одну сеть на несколько подсетей. Маски одинаковой длины используются для деления сети на подсети равного размера, а маски переменной длины — для деления сети на подсети разного размера. Использование масок модифицирует алгоритм маршрутизации, поэтому в этом случае предъявляются особые требования к протоколам маршрутизации в сети, к техническим характеристикам маршрутизаторов и процедурам их конфигурирования.

  • Значительная роль в будущем IP-сетей отводится технологии бесклассовой междоменной маршрутизации (CIDR), которая решает две основные задачи. Первая состоит в более экономном расходование адресного пространства — благодаря CIDR поставщики услуг получают возможность «нарезать» блоки разных размеров из выделенного им адресного пространства в точном соответствии с требованиями каждого клиента. Вторая задача заключается в уменьшении числа записей в таблицах маршрутизации за счет объединения маршрутов — одна запись в таблице маршрутизации может представлять большое количество сетей с общим префиксом.

  • Важной особенностью протокола IP, отличающей его от других сетевых протоколов, является его способность выполнять динамическую фрагментацию пакетов при передаче их между сетями с различными MTU. Это свойство во многом способствовало тому, что протокол IP смог занять доминирующие позиции в сложных составных сетях.

studfiles.net

Подробное изложение принципов настройки DNS с примером настройки сервера имен.


СТАНДАРТЫ DNS
ФОРМАТ ЗАПИСЕЙ В ФАЙЛАХ БАЗЫ DNS
ТИПЫ РЕСУРСОВ
SOA (НАЧАЛО ПОЛНОМОЧИЙ)
NS (СЕРВЕР ИМЕН)
A (АДРЕС)
CNAME (КАНОНИЧЕСКОЕ ИМЯ)
HINFO (ИНФОРМАЦИЯ О ХОСТЕ)
MX (ПОЧТОВЫЙ ШЛЮЗ)
PTR (УКАЗАТЕЛЬ)
СПЕЦИФИКАЦИЯ BIND
ПРИМЕР РЕАЛИЗАЦИИ DNS В ЛОКАЛЬНОЙ СЕТИ

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ


Среди администраторов сетей бытует мнение, что DNS следует использовать только при наличии подключения к Internet. Но DNS позволяет упростить администрирование локальных сетей TCP/IP независимо от того, имеют они выход в Internet или нет.

При отсутствии DNS добавление компьютера в локальную сеть приводит к тому, что в файл hosts каждого хоста необходимо ввести информацию о новом компьютере. Это нетрудно, если машин в сети немного. А если их десятки или сотни?

При использовании DNS вся процедура сводится к добавлению одной-двух строк в файлы базы DNS на первичном сервере имен. После этого хосты сети будут распознавать новый компьютер по имени автоматически.

Если по каким-либо причинам необходимо изменить IP-адрес или имя хоста, то с DNS сделать это довольно просто. Кроме того, использование DNS значительно облегчает процедуру подключения корпоративной сети к Internet.

СТАНДАРТЫ DNS

Настройка базы DNS задается в специальных текстовых файлах на серверах имен. Форматы записей в этих файлах регламентируются стандартами, изложенными в документах RFC (Request For Comments). Они разрабатываются «законодательным» органом Internet — IETF (Internet Engineering Task Force). Однако сам набор файлов и порядок их загрузки на серверах имен RFC не регламентируется. Для этого существует стандарт de facto под названием BIND (Berkley Internet Name Domain). Данная спецификация была разработана в университете Беркли и впервые реализована в BSD Unix. Подавляющее большинство серверов имен поддерживают спецификацию BIND.

Многие версии программного обеспечения серверов имен имеют административные утилиты, упрощающие настройку и управление базами DNS. Тем не менее администраторы сетей, как правило, предпочитают не пользоваться ими, а работать напрямую с файлами базы DNS. Хотя это несколько усложняет администрирование, но в то же время дает максимальную гибкость и полный контроль при управлении DNS.

В общем случае порядок запуска серверов имен следующий: сначала создаются файлы базы DNS (напрямую или через административные утилиты), а затем запускается сервис DNS (в Unix — демон named, в NetWare — программа NAMED.NLM).

ФОРМАТ ЗАПИСЕЙ В ФАЙЛАХ БАЗЫ DNS

В файлах базы DNS серверов имен используется так называемый формат записи стандартных ресурсов (Standard Resource Record Format). Выглядит этот формат следующим образом:

[] [] []  

Каждая составляющая здесь является полем записи и отделена от других пробелами или знаками табуляции.

- имя описываемого ресурса. Оно зависит от поля и может обозначать домен, зону управления, имя хоста и т. д. Если поле пустое, то в качестве него используется последнее заданное поле (в предыдущих записях).

- время жизни (в секундах). Определяет, как долго клиент DNS будет хранить запись в кэш-памяти. Если данное поле пустое, то в качестве берется значение поля , задаваемое в записи SOA (см. ниже).

описание класса используемых протоколов. Для Internet (TCP/IP) значение этого поля - IN. Если поле пустое, то в качестве него используется последний заданный класс.

- поле, задающее тип ресурса записи. Возможные значения этого поля приведены в разделе "Типы ресурсов".

- поле, устанавливающее данные текущего ресурса. Его содержание зависит от поля . Поле может быть составным, т. е. состоять из нескольких полей.

Следующие символы в записях имеют специальное значение (ниже перечислены некоторые из этих символов).

. Отдельно стоящая точка в поле обозначает текущий домен.

@ Отдельно стоящий символ "@" в поле обозначает текущий исходный домен.

( ) Скобки используются для размещения поля на нескольких строках (когда поле занимает несколько строк).

* Метасимвол. Заменяет любой набор символов.

; Символ комментария. От этого символа и до конца строки информация игнорируется.

Примечание. Следует знать, что в записях ресурсов доменное имя, не заканчивающееся точкой, считается относительным. При обработке оно прибавляется к текущему домену. Поэтому, когда задается полное имя, его необходимо заканчивать точкой.

ТИПЫ РЕСУРСОВ

Тип ресурса задается в поле записи ресурса.

Типов ресурсов множество. Полный их список можно узнать в соответствующих RFC (см. "Дополнительную информацию"). Ниже приводятся наиболее используемые типы.

SOA
Начало полномочий (управления) сервера имен.
NS
Сервер имен.
A
Адрес хоста.
CNAME
Каноническое имя. Используется для задания псевдонимов.
HINFO
Информация о хосте.
MX
Почтовый шлюз.
PTR
Указатель.

Рассмотрим каждый из этих типов.

SOA (НАЧАЛО ПОЛНОМОЧИЙ)

Запись с ресурсом типа SOA обозначает начало зоны управления сервера имен. Зона управления действует до следующей записи SOA. На Распечатке 1 дается формат записи SOA, а также пример использования.

Здесь поле является составным и включает поля , , и т. д.

Обозначает имя домена зоны управления.

Имя первичного сервера имен зоны.

Почтовый ящик лица, ответственного за зону. Данное поле формируется аналогично электронному адресу, но вместо символа "@" ставится точка (т. е. koka@aozio.msk.ru заменяется на koka.aozio.msk.ru).

Номер версии зоны. Когда производятся изменения в зоне, то это число необходимо увеличить. Именно по данному полю ориентируется вторичный сервер имен, определяя необходимость обновления информации по зоне.

Время в секундах, по прошествии которого вторичный сервер проверяет необходимость обновления информации по зоне.

Время в секундах для повторного обращения вторичного сервера зоны, если ранее попытка обращения к первичному серверу была неудачной.

Предел времени в секундах. Если вторичный сервер не может получить доступ к первичному в течение этого времени, то он будет считать информацию по зоне устаревшей.

Значение TTL в записях ресурсов данной зоны по умолчанию, т. е. когда поле пустое.

NS (СЕРВЕР ИМЕН)

Запись с ресурсом типа NS обозначает имя хоста, являющегося первичным сервером имен для домена. На Распечатке 2 дается формат и пример использования записи NS.

обозначает домен, а - имя сервера имен. В примере показывается, что серверы srv.comp1.com и srv.comp2.com представляют собой серверы имен домена comp1.com.

A (АДРЕС)

Запись с ресурсом типа A служит для задания сетевого адреса хоста. На Распечатке 3 приводится формат и пример использования записи A. Здесь - доменное имя хоста, а

- его IP-адрес.

CNAME (КАНОНИЧЕСКОЕ ИМЯ)

Запись с ресурсом типа CNAME применяется для указания псевдонима хоста. Формат и пример использования записи CNAME приведены на Распечатке 4. обозначает псевдоним, а - официальное (каноническое) имя хоста.

HINFO (ИНФОРМАЦИЯ О ХОСТЕ)

Запись с ресурсом типа HINFO служит для хранения информации о хосте, в частности об аппаратной платформе и операционной системе компьютера. На Распечатке 5 представлен формат и пример использования записи HINFO. Поле обозначает доменное имя хоста, - аппаратную платформу, - ОС хоста. Значения полей и стандартизированы, их следует брать из RFC 1700. Но можно применять и свои варианты, поскольку данный RFC сильно устарел (там нет ПК старше 386, а также Windows NT, Windows 95 и т. д.).

MX (ПОЧТОВЫЙ ШЛЮЗ)

Для отдельных хостов или всего домена запись с ресурсом типа MX позволяет определить почтовый шлюз - компьютер, куда будет направляться электронная почта, предназначенная для этих хостов. Формат и пример использования записи MX представлены на Распечатке 6. Поле обозначает домен или имя хоста, для которого устанавливается почтовый шлюз. - имя хоста почтового шлюза. задает приоритет доставки, при этом ноль означает самый высокий приоритет. В примере показано, что если почта предназначена для домена comp.com, то она доставляется на машину unix1.comp.com. Если же почта предназначена для любого компьютера домена, имя которого оканчивается на -dos, то она направляется на unix2.comp.com.

Таким образом, письмо, отправленное по адресу:

1. ivan@comp.com, переадресуется ivan@unix1.comp.com;

2. ivan@pc-dos.comp.com, переадресуется ivan@unix2.comp.com;

3. ivan@host1.comp.com, попадет к ivan@host1.comp.com.

PTR (УКАЗАТЕЛЬ)

Прежде чем рассматривать записи с ресурсом типа PTR, следует остановиться на поиске доменного имени хоста по его IP-адресу (так называемое обратное преобразование).

Структура имен в доменной системе построена так, что, продвигаясь вдоль иерархического дерева DNS, за счет последовательного обращения к серверам имен IP-адрес хоста можно найти по его имени (прямое преобразование). А вот доменное имя хоста по его IP-адресу в такой системе найти довольно трудно.

Для того чтобы облегчить эту задачу, в пределах общей доменной структуры был создан вспомогательный домен. Он имеет специальное название IN-ADDR.ARPA. Внутри этого домена существуют поддомены для каждой IP-сети. Имена этих поддоменов основаны на сетевых адресах, причем байты (октеты) IP-адресов представлены в обратном порядке.

Например, сеть cso.uiuc.edu имеет сетевой адрес 128.174 (вернее, 128.174.0.0, это IP-сеть класса B). Внутри этой сети имеется хост vmd.cso.uiuc.edu с IP-адресом 128.174.5.98. Тогда для всей сети вспомогательный домен будет 174.128.in-addr.arpa. Имя хоста в этом домене будет 98.5.174.128.in-addr.arpa.

Ресурсы с записью типа PTR служат для отображения этих специальных доменных имен в обычные. На Распечатке 7 представлен формат записи PTR и пример использования. Поле обозначает специальное доменное имя (в домене IN-ADDR.ARPA), а поле - официальное доменное имя хоста.

Вспомогательный домен IN-ADDR.ARPA используется также для указания шлюза (маршрутизатора) для сетей. Шлюз представляет собой хост, соединяющий несколько IP-сетей. Для него существуют обычные записи PTR хоста, но, кроме того, имеются специальные записи PTR, представляющие IP-сети целиком. Эти записи включают только первые 1, 2 или 3 байта (октета) IP-адреса сети в зависимости от класса IP-сети (A, B или C).

Допустим, имеется шлюз gw.comp1.com, объединяющий сети класса A, B и C и имеющий соответствующие IP-адреса: 12.2.0.7, 129.14.1.3 и 194.140.13.2. На Распечатке 8 представлены записи A и PTR для данного шлюза.

СПЕЦИФИКАЦИЯ BIND

Как уже отмечалось, стандартом de facto в описании состава файлов DNS и порядка их загрузки на сервере имен является спецификация BIND. Она поддерживается во всех Unix-системах, в NetWare (программные продукты Novell NFS Services, FTP Services, NetWare/IP) и ряде других систем.

Согласно данной спецификации существует файл загрузки базы DNS. В Unix-системах обычно это файл /etc/named.boot, в NetWare - SYS:ETCNAMED.CFG, который загружается при запуске сервиса DNS на сервере имен. Основное назначение файла загрузки - указывать, где расположены файлы базы DNS, а также адреса серверов имен. При любом изменении как файла загрузки, так и файлов базы DNS сервис DNS необходимо перезапускать.

Файл загрузки базы DNS является текстовым и состоит из отдельных записей. Наиболее часто используются следующие записи.

1. directory

Устанавливает каталог хранения файлов базы DNS, если не указаны абсолютные пути к файлам. Пример: directory /etc

2. domain

Определяет домен по умолчанию для данного сервера имен. Пример: domain company.msk.ru

3. primary

Показывает, что сервер имен является первичным для домена и что база домена хранится в файле . Пример: primary company.msk.ru /usr/named.data

4. secondary [...]

Указывает, что данный сервер имен является вторичным для домена . Первичные серверы расположены по IP-адресам , и т. д. Данный вторичный сервер запрашивает по порядку первичные серверы и копирует полученную с первого ответившего первичного сервера информацию в файл . Пример: secondary comp.com 194.132.14.3 named.bak

5. cache

Указывает, что данный сервер является кэш-сервером имен для домена . Параметры кэш-сервера (прежде всего адреса и имена серверов имен корневого домена) считываются из файла . Пример: cache . named.ca

6. Строка, начинающаяся с символа ";", считается комментарием.

Кстати, для обозначения полного доменного имени в файле загрузки ставить точку в конце имени не обязательно: здесь все имена считаются полными.

ПРИМЕР РЕАЛИЗАЦИИ DNS В ЛОКАЛЬНОЙ СЕТИ

Подводя итоги, рассмотрим пример настройки DNS на серверах имен типичной локальной сети TCP/IP.

В примере принято, что локальная сеть подключена к Internet. В то же время показываются настройки, когда локальная сеть не имеет выхода в Internet.

IP-адреса сетей и хостов, а также доменные имена вымышленные и приведены лишь для простоты понимания.

В реальной жизни, если сеть будет подключаться к Internet, необходимо получить официальные IP-адреса сетей и зарегистрированный домен. Их выдачей занимается специализированная организация в рамках Internet под названием InterNIC, при этом регистрация доменов происходит независимо от выдачи IP-адресов. Однако в России IP-адреса можно получить с помощью своего Internet-провайдера или обратившись по адресу ncc@ussr.EU.net или ncc@kiae.su. Доменное имя регистрируется через Internet-провайдера.

Если локальная сеть не имеет выхода в Internet, то IP-адреса и доменные имена можно выбрать по своему усмотрению. Если в дальнейшем возникнет потребность подключения к Internet, то перестроить DNS не составит труда.

Рассматриваемая локальная сеть состоит из двух IP-сетей класса C: 194.170.12.0 и 194.170.13.0 (Рисунок 1). Допустим, эти сети образуют один домен comp1.msk.ru. IP-сети объединяют шлюз (маршрутизатор) gw с адресами: 194.170.12.1 и 194.170.13.4. Подключение к Internet также происходит через данный шлюз. В домене имеется первичный сервер имен srv1 (194.170.12.2) и вторичный сервер имен srv2 (194.170.13.3), а также ряд хостов: host1, host2, host3. Хост mail (194.170.13.2) является почтовым шлюзом для всего домена, к тому же у него есть псевдоним host4.

Picture 1(1x1)

Рисунок 1.
Пример реализации DNS.

На Распечатке 9 представлены состав и содержимое базы DNS для первичного сервера имен srv1.comp1.msk.ru, а на Распечатке 10 - для вторичного сервера srv2.comp1.msk.ru.

Как для первичного, так и для вторичного сервера имен, в случае если локальная сеть не имеет выхода в Internet, следует убрать строку cache в файле /etc/named.boot и удалить файл /etc/named.ca.

Об именах и адресах серверов имен корневого домена, перечисленных в файле /etc/named.ca, необходимо справиться у Internet-провайдера. Кроме того, Internet-провайдер должен внести данные о серверах имен srv1.comp1.msk.ru и srv2.comp1.msk.ru в свою базу DNS, чтобы обеспечить доступ из Internet к машинам домена comp1.msk.ru.

Вспомогательный домен 0.0.127.in-addr.arpa, а также хост localhost (127.0.0.1) в каждой из зон необходимы для создания локальной "петли" TCP/IP.

Обратите внимание, что порядок записей в файлах базы DNS в общем случае значения не имеет, за исключением того, что запись SOA должна стоять первой в зоне управления.


Константин Пьянзин - администратор сети АО "Подольский машиностроительный завод". С ним можно связаться по адресу: koka@aozio.msk.ru.

РАСПЕЧАТКА 1 - ЗАПИСЬ SOA

 [] [] SOA   (           )  comp.com. IN SOA srv.comp.com. root.srv.comp.com. (  970308  3600  600  3600000  86400 )  

РАСПЕЧАТКА 2 - ЗАПИСЬ NS

[] [] [] NS   comp1.com. NS srv.comp1.com.  NS srv.comp2.com.  

РАСПЕЧАТКА 3 - ЗАПИСЬ A

[] [] [] A   sri-nic.arpa. A 10.0.0.51  

РАСПЕЧАТКА 4 - ЗАПИСЬ CNAME

[] [] [] CNAME   pc1.comp.com. CNAME srv.comp.com.  

РАСПЕЧАТКА 5 - ЗАПИСЬ HINFO

[] [] [] HINFO    pc1 HINFO IBM-PC MSDOS rs1 HINFO IBM-RS/6000 AIX  

РАСПЕЧАТКА 6 - ЗАПИСЬ MX

[] [] [] MX    comp.com. MX 10 unix1.comp.com. *-dos.comp.com. MX 10 unix2.comp.com.  

РАСПЕЧАТКА 7 - ЗАПИСЬ PTR ДЛЯ ХОСТА

[] [] [] PTR   98.5.174.128.in-addr.arpa. PTR vmd.cso.uiuc.edu. 51.0.0.10.in-addr.arpa. PTR sri-nic.arpa.  

РАСПЕЧАТКА 8 - ПРИМЕР ЗАПИСЕЙ PTR И A ДЛЯ ШЛЮЗА

;Записи A gw.comp1.com. A 12.2.0.7  A 129.14.1.3  A 194.140.13.2 ; Записи PTR для шлюз к к х(r)ст  7.0.2.12.in-addr.arpa. PTR gw.comp1.com. 3.1.14.129.in-addr.arpa. PTR gw.comp1.com. 2.13.140.194.in-addr.arpa. PTR gw.comp1.com. ; З писи PTR для сете(c) 12.in-addr.arpa. PTR gw.comp1.com. 14.129.in-addr.arpa. PTR gw.comp1.com. 13.140.194.in-addr.arpa. PTR gw.comp1.com.  

РАСПЕЧАТКА 9 - СОСТАВ И СОДЕРЖИМОЕ БАЗЫ DNS НА ПЕРВИЧНОМ СЕРВЕРЕ SRV1

; " (c)л /etc/named.boot directory /etc domain comp1.msk.ru primary comp1.msk.ru named.data primary 12.170.194.in-addr.arpa named.rev1 primary 13.170.194.in-addr.arpa named.rev2 primary 0.0.127.in-addr.arpa named.local ; вых(r)д в Internet cache . named.ca   ; " (c)л /etc/named.data @ IN SOA srv1.comp1.msk.ru. root.mail.comp1.msk.ru. (  970308  3600  600  3600000  86400 )  NS srv1.comp1.msk.ru. localhost A 127.0.0.1 gw A 194.170.12.1  A 194.170.13.4  HINFO IBM-RS/6000 AIX srv1 A 194.170.12.2  HINFO IBM-RS/6000 AIX host1 A 194.170.12.3  HINFO IBM-PC MSDOS host2 A 194.170.12.4  HINFO IBM-PC MSDOS host3 A 194.170.13.1  HINFO IBM-PC MSDOS mail A 194.170.13.2  HINFO IBM-PC UNIX host4 CNAME mail.comp1.msk.ru. srv2 A 194.170.13.3  HINFO IBM-PC UNIX comp1.msk.ru. MX 10 mail *.comp1.msk.ru. MX 0 mail.comp1.msk.ru.   ; " (c)л /etc/named.rev1 @ IN SOA srv1.comp1.msk.ru. root.mail.comp1.msk.ru. (  960218  3600  600  3600000  86400 )  NS srv1.comp1.msk.ru. 1 PTR gw.comp1.msk.ru. 12.170.194.in-addr.arpa. PTR gw.comp1.msk.ru. 2 PTR srv1.comp1.msk.ru. 3 PTR host1.comp1.msk.ru. 4 PTR host2.comp1.msk.ru.   ; " (c)л /etc/named.rev2 @ IN SOA srv1.comp1.msk.ru. root.mail.comp1.msk.ru. (  970205  3600  600  3600000  86400 )  NS srv1.comp1.msk.ru. 1 PTR host3.comp1.msk.ru. 2 PTR mail.comp1.msk.ru. 3 PTR srv2.comp1.msk.ru. 4 PTR gw.comp1.msk.ru. 13.170.194.in-addr.arpa. PTR gw.comp1.msk.ru.   ; " (c)л /etc/named.local @ IN SOA srv1.comp1.msk.ru. root.mail.comp1.msk.ru. (  960124  3600  600  3600000  86400 )  NS srv1.comp1.msk.ru. 1 PTR localhost   ; " (c)л /etc/named.ca . 999999 IN NS sri-nic.arpa.  NS brl-aos.arpa. sri-nic.arpa. 999999 A 10.0.0.51  999999 A 26.0.0.73 brl-aos.arpa. 999999 A 192.5.25.82  999999 A 128.20.1.2  

РАСПЕЧАТКА 10 - СОСТАВ И СОДЕРЖИМОЕ БАЗЫ DNS НА ВТОРИЧНОМ СЕРВЕРЕ SRV

; " (c)л /etc/named.boot directory /etc domain comp1.msk.ru secondary comp1.msk.ru 194.170.12.2 named.data.bak secondary 12.170.194.in-addr.arpa 194.170.12.2 named.rev1.bak secondary 13.170.194.in-addr.arpa 194.170.12.2 named.rev2.bak primary 0.0.127.in-addr.arpa named.local ; вых(r)д в Internet cache . named.ca   ; " (c)л /etc/named.local @ IN SOA srv2.comp1.msk.ru. root.mail.comp1.msk.ru. (  960124  3600  600  3600000  86400 )  NS srv2.comp1.msk.ru.1 PTR localhost   ; " (c)л /etc/named.ca . 999999 IN NS sri-nic.arpa.  NS brl-aos.arpa. sri-nic.arpa. 999999 A 10.0.0.51  999999 A 26.0.0.73 brl-aos.arpa. 999999 A 192.5.25.82  999999 A 128.20.1.2

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Для тех, кто хочет более детально ознакомиться с DNS, можно порекомендовать специализированную литературу. К сожалению, вся она на английском языке.

  1. P. Albitz and C. Liu. "DNS and BIND" Help for Unix System Administrators, O'Reilly and Associates, Inc. Это самая полная и понятная книга по DNS, но в ней приводятся сведения по настройке DNS только на Unix-машинах. Книга встречается в продаже в Москве.
  2. Документы RFC. Основными для знакомства с DNS являются RFC 1032, 1033, 1034 и 1035. Для глубокого понимания DNS рекомендуются RFC: 2052, 1996, 1995, 1912, 1886, 1876, 1816, 1794, 1788, 1713, 1712, 1706, 1703, 1664, 1612, 1611, 1591, 1536, 1535, 1530, 1529, 1528, 1519, 1517, 1464, 1401, 1383, 1183, 1136, 1101, 974, 921, 920, 897, 881, 799, 756, 752. RFC можно получить через анонимный ftp по любому из перечисленных адресов: ftp.misc.sri.com, nisc.junc.net, nnsc.nsf.net, munnari.oz.au.

www.osp.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.