Модуль в модуле


Среди примеров на модули часто встречаются уравнения где нужно найти корни модуля в модуле, то есть уравнение вида
||a*x-b|-c|=k*x+m.
Если k=0, то есть правая сторона равна постоянной (m) то проще искать решение уравнения с модулями графически. Ниже приведена методика раскрытия двойных модулей на распространенных для практики примерах. Хорошо разберите алгоритм вычисления уравнений с модулями, чтобы не иметь проблем на контрольных, тестах, и просто, чтобы знать.

Пример 1. Решить уравнение модуль в модуле |3|x|-5|=-2x-2.
Решение: Всегда начинают раскрывать уравнения с внутреннего модуля
|x|=0 <-> x=0.
В точке x=0 уравнения с модулем разделяется на 2.
При x < 0 подмодульная функция отрицательная, поэтому при раскрытии знак меняем на противоположный
|-3x-5|=-2x-2.
При x>0 или равно, раскрывая модуль получим
|3x-5|=-2x-2.
Решим уравнение для отрицательных переменных (x < 0). Оно разлагается на две системы уравнений. Первое уравнение получаем из условия, что функция после знака равенства неотрицательна. Второе — раскрывая модуль в одной системе принимаем, что подмодульная функция положительная, в иной отрицательная — меняем знак правой или левой части (зависит от методики преподавания).


раскрытия модулей
Из первого уравнения получим что решение не должно превышать (-1), т.е.
условие на корень
Это ограничение полностью принадлежит области в которой решаем. Перенесем переменные и постоянные по разные стороны равенства в первой и второй системе
решения уравнений
и найдем решение
Модуль в модуле
Модуль в модуле
Оба значения принадлежат промежутку что рассматривается, то есть являются корнями.
Рассмотрим уравнение с модулями при положительных переменных
|3x-5|=-2x-2.
Раскрывая модуль получим две системы уравнений
уравнения с модулем, раскрытия
Из первого уравнения, которое является общим для двух сиcтем, получим знакомое условие

Модуль в модуле
которое в пересечении с множеством, на котором ищем решение дает пустое множество (нет точек пересечения). Итак единственными корнями модуля с модулем являются значения
x=-3; x=-1,4.

 

Пример 2. Решить уравнение с модулем ||x-1|-2|=3x-4.
Решение: Начнем с раскрытия внутреннего модуля
|x-1|=0 <=> x=1.
Подмодульная функция меняет знак в единице. При меньших значениях она отрицательная, при больших — положительная. В соответствии с этим при раскрытии внутреннего модуля получим два уравнения с модулем
x |-(x-1)-2|=3x-4;
x>=1 -> |x-1-2|=3x-4.
Обязательно проверяем правую сторону уравнения с модулем, она должна быть больше нуля.
3x-4>=0 -> x>=4/3.
Это означает, что первое из уравнений нет необхидноcти решать, поcкольку оно выпиcано для x< 1,что не соответствует найденному условию. Раскроем модуль во втором уравнении
|x-3|=3x-4 ->
x-3=3x-4 или x-3=4-3x;
4-3=3x-x или x+3x=4+3;
2x=1 или 4x=7;
x=1/2 или x=7/4.
Получили два значения, первое из которых отвергаем, поскольку не принадлежит нужному интервалу. Окончательно уравнение имеет одно решение x=7/4.


 

Пример 3. Решить уравнение с модулем ||2x-5|-1|=x+3.
Решение: Раскроем внутренний модуль
|2x-5|=0 <=> x=5/2=2,5.
Точка x=2,5 разбивает числовую ось на два интервала. Соответственно, подмодульная функция меняет знак при переходе через 2,5. Выпишем условие на решение с правой стороны уравнения с модулем.
x+3>=0 -> x>=-3.
Итак решением могут быть значения, не меньше (-3). Раскроем модуль для отрицательного значения внутреннего модуля
|-(2x-5)-1|=x+3;
|-2x+4|=x+3.
Этот модуль также при раскрытии даст 2 уравнения
-2x+4=x+3 или 2x-4=x+3;
2x+x=4-3 или 2x-x=3+4;
3x=1; x=1/3 или x=7.
Значение x=7 отвергаем, поскольку мы искали решение на промежутке [-3;2,5]. Теперь раскрываем внутренний модуль для x>2,5. Получим уравнение с одним модулем
|2x-5-1|=x+3;
|2x-6|=x+3.
При раскрытии модуля получим следующие линейные уравнения
-2x+6=x+3 или 2x-6=x+3;
2x+x=6-3 или 2x-x=3+6;
3x=3; x=1 или x=9.
Первое значение x=1 не удовлетворяет условие x>2,5. Так что на этом интервале имеем один корень уравнения с модулем x=9, а всего их два (x=1/3).Подстановкой можно проверять правильность выполненных вычислений
Ответ: x=1/3; x=9.

 

Пример 4. Найти решения двойного модуля ||3x-1|-5|=2x-3.
Решение: Раскроем внутренний модуль уравнения
|3x-1|=0 <=> x=1/3.


r /> Точка x=2,5 делит числовую ось на два интервала, а заданное уравнение на два случая. Записываем условие на решение, исходя из вида уравнения с правой стороны
2x-3>=0 -> x>=3/2=1,5.
Отсюда следует, что нас интересуют значения >=1,5. Таким образом модульное уравнения рассматриваем на двух интервалах
[1,5; 2,5], [2,5; +бесконечность).
Раскроем модуль при отрицательных значениях внутреннего модуля [1,5; 2,5]
|-(3x-1)-5|=2x-3;
|-3x-4|=2x-3.
Полученный модуль при раскрытии делится на 2 уравнения
-3x-4=2x-3 или 3x+4=2x-3;
2x+3x=-4+3 или 3x-2x=-3-4;
5x=-1; x=-1/5 или x=-7.
Оба значения не попадают в промежуток [1,5; 2,5], то есть не являются решениями уравнения с модулями. Далее раскроем модуль для x>2,5. Получим следующее уравнение
|3x-1-5|=2x-3;
|3x-6|=2x-3.
Раскрывая модуль, получим 2 линейные уравнения
3x-6=2x-3 или –(3x-6)=2x-3;
3x-2x=-3+6 или 2x+3x=6+3;
x=3 или 5x=9; x=9/5=1,8.
Второе значение из найденных не соответствует условию x>2,5, его мы отвергаем.
Наконец имеем один корень уравнения с модулями x=3.
Выполняем проверку
||3*3-1|-5|=2*3-3 3=3.
Корень уравнения с модулем вычислено правильно.
Ответ: x=1/3; x=9.

Примеров с модулями где есть один или несколько вложенных модулей в интернете или методичке можно найти немало. Схема их вычислений ничем не отличается от приведенной выше. Для проверки знаний прошу решить следующие задачи.

Равнение на модуль в модуле:

  • ||3x-3|-2|=5-2x;
  • ||5x-3|-3|=3x-1;
  • ||2x-7|-4|=x-2;
  • ||5x-4|-8|=x+4;
  • ||2x-2|-3|=1;
  • ||x-2|-3|=4-x.

Похожие материалы:

  • Решение уравнений с модулями
  • Модуль в модуле. Графический метод
  • Уравнения с модулями. Графический метод
  • Решение неравенств с модулями

yukhym.com

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

  1. Что такое модуль числаДля примера можно взять координатную прямую и на ней нанести 2 произвольные точки. Допустим, одна из точек (А) будет иметь числовое значение 5, а вторая (В) — 6.
  2. Если рассмотреть полученный чертёж, можно увидеть, что точка, А находится на расстоянии 5 единиц от нуля (начала координат). Точка В находится от нуля на 6 единиц. Таким образом, модулем точки, А будет число 5, а модулем точки В — число 6.
  3. В этом случае графическое обозначение выражения будет следующим: | 5 | = 5.
  4. Иными словами, если взять любое произвольное число и обозначить его на координатной прямой в виде точки А, то расстояние от нуля до этой точки и будет модулем числа А.

Графически это можно выразить следующим образом: |a| = OA.

Это интересно: признак перпендикулярности прямой и плоскости, теория и практика.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

  1. Как найти модуль числаМодулем любой цифры является величина неотрицательная. Таким образом, абсолютным значением положительной величины будет выступать она сама. Графически эта закономерность выражается следующим образом: |a| = a, если a> 0.
  2. Модули противоположных величин равны друг другу Это объясняется тем фактом, что на координатной прямой противоположные числа хотя и располагаются в разных точках, но находятся на одинаковом расстоянии от начальной точки отсчёта. Графически это выражается как: |а| = |-а|.

  3. Третьим свойством является то, что абсолютным значением нуля равняется сам нуль. Это условие считается верным в том случае, когда действительное число является нулем. Поскольку нулю соответствует начало отсчета в системе координат, то модулем числа ноль является сам ноль по определению. Графически: |0| = 0|.
  4. Еще одним важным свойством является то, что абсолютное значение произведений двух любых действительных чисел равняется произведению двух этих величин. Это условие необходимо рассмотреть более подробно. Иначе говоря, абсолютным значением произведения величин, А и В будет АВ в случае если оба этих значения положительные или же оба отрицательные, или -АВ при условии, что одно из этих чисел будет отрицательным. В записи эта закономерность будет выглядеть следующим образом: |А*В| = |А| * |В|.
  5. Абсолютная величина суммы любых двух действительных чисел меньше или равна сумме их модулей.
  6. Абсолютная величина разности двух произвольных величин меньше или равна разности двух абсолютных величин.
  7. Если в математическом выражении имеется постоянный положительный множитель, его можно выносить за знак | |.
  8. Такое же правило распространяется и на показатель степени выражения.

Это интересно: что такое разность в математике?

Особенности решения уравнений с модулем

Особенности уравнений с модулейЕсли говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.


К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5, если, А больше или равняется нулю.

5-А, если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

obrazovanie.guru

Политика конфиденциальности

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.


Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

youclever.org

«>Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа,  и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5.

Число -5  имеет знак «-» и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x),   если f(x) ≥ 0, и

|f(x)|= — f(x), если f(x) < 0

Например |x-3|=x-3,  если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

Чтобы решить уравнение , содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля.

Тогда наше уравнение или неравенство преобразуется в два  различных уравнения, существующих на двух различных числовых промежутках.

Одно уравнение  существует на числовом  промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

Рассмотрим простой пример.

Решим уравнение:

|x-3|=-x2+4x-3

1.  Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если  x-3<0, т.е. если х<3

2. Мы получили два числовых промежутка:  х≥3 и х<3.

Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

А) При  х≥3 |x-3|=x-3, и наше уранение имеет вид:

x-3=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

x2 -3х=0

и решим это уравнение.

Это уравнение имеет корни:

х1=0, х2=3

Внимание! поскольку  уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.

Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

3-x=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х<3!

Раскроем скобки, приведем подобные члены. Получим уравнение:

x2-5х+6=0

х1=2, х2=3

Внимание! поскольку  уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2.

Итак: из первого промежутка мы берем только корень х=3, из второго — корень  х=2.

Ответ:  х=3, х=2

 

ege-ok.ru

Одна из самых сложных тем для учащихся  – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?

На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, как решать уравнение с модулем_1ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.

Но для начала вспомним определение модуля. Итак,  модулем числа a называется само это число, если a неотрицательно и  -a, если  число a меньше нуля. Записать это можно так:

|a| = a, если a ≥ 0 и |a| = -a, если a < 0

Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее  ккак решать уравнения с модулемоордината. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.

Теперь перейдем непосредственно к решению уравнений.

1. Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.

Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:

                             {±c, если с > 0

 Если |x| = c, то x = {0, если с = 0

                             {нет корней, если с < 0

Примеры:

1) |x| = 5, т.к. 5 > 0, то x = ±5;

2) |x| = -5, т.к. -5 < 0, то уравнение не имеет корней;

3) |x| = 0, то x = 0.

2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b< 0, решений не будет.

Примеры:

1) |x + 2| = 4, т.к. 4 > 0, то

x + 2 = 4 или x + 2 = -4

x = 2             x = -6

2) |x2 – 5| = 11, т.к. 11 > 0, то

x2 – 5 = 11 или x2 – 5 = -11

x2 = 16            x2 = -6

x = ± 4             нет корней

3) |x2 – 5x| = -8 , т.к. -8 < 0, то уравнение не имеет корней.

3. Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:

f(x) = g(x) или f(x) = -g(x).

Примеры:

1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.

1. О.Д.З. 5x – 10 ≥ 0

              5x ≥ 10  

               x ≥ 2.  

2. Решение:

2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)

3x = 9                     7x = 11

x = 3                       x = 11/7

3. Объединяем О.Д.З. и решение, получаем:

Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.

Ответ: x = 3  

2) |x – 1| = 1 – x2.

1. О.Д.З. 1 – x2 ≥ 0. Решим методом интервалов данное неравенство:

             (1 – x)(1 + x) ≥ 0

             -1 ≤ x ≤ 1  

2. Решение:

x – 1 = 1 – x2      или   x – 1 = -(1 – x2)

x2 + x – 2 = 0            x2 – x = 0

x = -2 или x = 1         x = 0 или x = 1

3. Объединяем решение и О.Д.З.:

Подходят только корни x = 1 и x = 0.

Ответ: x = 0, x = 1. 

4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).

Пример:

1) |x2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:

x2 – 5x + 7  = 2x – 5 или x2 – 5x +7  = -2x + 5   

x2 – 7x + 12  = 0            x2 – 3x + 2  = 0

x = 3 или x = 4             x = 2 или x = 1  

Ответ: x = 1, x = 2, x = 3, x = 4.

5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:

 x2 – 6|x| + 5 = 0. По свойству модуля x2 = |x|2, поэтому уравнение можно переписать  так:

|x|2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:

t2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:

|x| = 1 или |x| = 5

x = ±1        x = ± 5

Ответ: x = -5, x = -1, x = 1, x = 5. 

Рассмотрим еще один пример:

x2 + |x| – 2 = 0. По свойству модуля  x2 = |x|2, поэтому

|x|2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:

t2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:

|x| = -2   или |x| = 1

Нет корней     x = ± 1

Ответ: x = -1, x = 1.

6. Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.как решать уравнения с модулем

Примеры:

1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:

3 – |x| = 4 или  3 – |x| = -4.

Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.

Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1 < 0, а во втором x = ±7.

Ответ x = -7, x = 7.

2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:

3 + |x + 1| = 5      или     3 + |x + 1| = -5

|x + 1| = 2                       |x + 1| = -8

x + 1 = 2 или x + 1 = -2.   Нет корней.

x = 1            x = -3

Ответ: x = -3, x = 1.

Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

 

Введение.

Практически каждый учитель знает, какие проблемы вызывают у учащихся задания, содержащие модуль. Это один из самых трудных материалов, с которыми школьники сталкиваются на экзаменах.

Выбор темы обусловлен тем, что, во-первых, задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах и на экзаменах, во-вторых, это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсе высшей математики. Так в математическом анализе понятие абсолютной величины числа используется при определении основных понятий: предела, ограниченности функции и других. В теории приближенных вычислений употребляется понятие абсолютной погрешности. В механике, в геометрии изучается понятие вектора, одной из характеристик которого служит его длина (модуль вектора).
Несмотря на то, что тема «Модуль числа» проходит «красной нитью» через весь курс школьной и высшей математики, для ее изучения по программе отводится очень мало времени (в 6 классе -2 часа, в 8 классе — 4 часа).

Исходя из всего вышесказанного, учителю необходимо находить разнообразные методические приемы, использовать различные подходы и методы в обучении решению задач с модулем. Разнообразие методов будет способствовать сознательному усвоению математических знаний, вовлечению учащихся в творческую деятельность, а также решению ряда методических задач, встающих перед учителем в процессе обучения, в частности, реализации внутрипредметных связей (алгебра-геометрия), расширению области использования графиков, повышению графической культуры учеников.

Указанные обстоятельства обусловили выбор темы творческой работы. Цель работы: показать необходимость более глубокого рассмотрения темы «Решение уравнений с модулем» в школьной программе; разработать методические рекомендации по использованию различных методов при решении задач с модулем. §1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме. Уравнением с одной переменной называют равенство, содержащее переменную. Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Решить уравнение – значит, найти все его корни или доказать, что корней нет. Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Существует несколько способов решения уравнений с модулем. Рассмотрим подробнее каждый из них.

1 способ. Метод последовательного раскрытия модуля.

Опорная информация:

Пример 1. Решим уравнение |х-5|=4.

Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х1=9, х2=1.
Ответ: 9; 1.
Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2. Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.
1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х1=5,5, х2= -4,5.
2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.
Ответ: 5,5; -4,5.
2 способ. Метод интервалов.
Опорная информация:

Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Пример 3. Решим уравнение |х+3|+|х-1|=6.
Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:
-3 1

Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х < -3) оба выражения, стоящие под знаком модуля отрицательны, поэтому при записи уравнения без абсолютной величины знаки этих выражений меняем на противоположные. Получим уравнение:
-х-3-х+1=6. Откуда х= -4. Число -4 является решением данного уравнения, так как оно принадлежит рассматриваемому промежутку. Во втором промежутке (-3 ≤ х < 1) первое выражение положительно, а второе отрицательно. Рассуждая аналогично, получим уравнение: х+1-х+1=6, откуда получаем неверное числовое равенство, то есть в рассматриваемом промежутке уравнение корней не имеет. В последнем промежутке (х ≥ 1) оба выражения положительны, поэтому уравнение записывается так: х+3+х-1=6. Откуда х=2. Это значение удовлетворяет неравенству х ≥ 1. Ответ: -4; 2. Пример 4. |2-х|=2х+1.
Прежде всего, следует установить область допустимых значений. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости этого делать. В этом уравнении в правой части стоит выражение с переменной, которое может быть отрицательным. Таким образом, область допустимых значений – это промежуток [-½; +∞). Найдем нуль выражения, стоящего под знаком модуля: 2-х=0, х=2.
В первом промежутке: 2-х=2х+1, х=⅓. Это значение принадлежит ОДЗ, значит, является корнем уравнения.
Во втором промежутке: -2+х=2х+1, х= -3. -3 не принадлежит ОДЗ, а следовательно не является корнем уравнения. Ответ: ⅓.
3 способ. Графический метод.
Суть данного метода заключается в использовании графиков функций для нахождения корней уравнения. Этот метод реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Пример 5. |х+1|=2. Построим графики функций у=|х+1| и у=2.
Для построения графика у=|х+1|, построим график функции у=х+1, а затем отразим часть прямой, лежащую ниже оси ОХ. Абсциссы точек пересечения графиков и есть корни уравнения: х1=1, х2= -3. Ответ: 1; -3.

Пример 6. |х2-1|=|4-х2|.
Построим графики функций у=|х2-1| и у=|4-х2|. Для этого построим графики функций у= х2-1 и у=4-х2, а затем отобразим часть графиков, лежащую ниже оси ОХ.
х1≈1,6; х2≈-1,6.
4 способ. Метод решения при помощи зависимостей между числами а и в, их модулями и квадратами этих чисел.
Опорная информация:

Пример 7. Решим уравнение |х2-8х+5|=|х2-5|.
Учитывая соотношение (1), получим:
х2-8х+5= х2-5 или х2-8х+5= -х2+5
х=1,25 х=0 или х=4.
Таким образом, корни исходного уравнения: х1=1,25; х2=0; х3=4.
Ответ: 1,25; 0; 4.

Пример 8. |х+3|=|х-5|.
В силу соотношения (2) получаем: (х+3)2=(х-5)2;
х2+6х+9= х2-10х+25;
х=1.
Ответ:1.

Пример 9. (1-3х)2=(х-2)2.
Учитывая соотношение (2), получаем: |1-3х|=|х-2|, откуда из соотношения (1), имеем:
1-3х=х-2 или 1-3х= -х+2
х=0,75 х= -0,5.
Ответ: 0,75; -0,5.
5 способ. Использование геометрической интерпретации модуля.
Опорная информация: геометрический смысл модуля разности величин – это расстояние между ними. Например, геометрический смысл выражения |х-а| — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример 10. |х-2|+|х-3|=1.
Исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки с абсциссой х до двух фиксированных точек с абсциссами 2 и 3. Тогда очевидно, что все точки с абсциссами, принадлежащими отрезку [2;3] обладают требуемым свойством, а точки, расположенные вне этого отрезка – нет. Отсюда, множеством решений уравнения является отрезок [2;3].
Ответ: [2;3].

Пример 11. |х-2|-|х-3|=1.
Рассуждая аналогично, получим, что разность расстояний до точек с абсциссами 2 и 3 равна 1 только для точек, расположенных на координатной оси правее числа 3. Следовательно, решением данного уравнения будет являться луч, выходящий из точки 3, и направленный в положительном направлении оси ОХ.
Ответ: [3;+∞).
Обобщением вышеприведенных уравнений 10 и 11 являются следующие равносильные переходы:

Проанализировав представленные способы решения уравнений, содержащих модуль, можно сделать вывод, что ни один из них не является универсальным и для получения наилучших результатов необходимо добиваться того, чтобы ученик овладел возможно большим количеством методов решения, оставляя право выбора решения за собой. §2. Методические рекомендации по использованию методов решения уравнений, содержащих модуль.
Практика обучения учащихся 7-8 классов способам решения уравнений, содержащих модули, позволила выявить достоинства и недостатки каждого способа, которые для удобства сведены в таблицу.
Способы Достоинства Недостатки
Метод последовательного раскрытия модулей 1). Объявляя условие раскрытия одного модуля, можно пользоваться им для раскрытия других модуле тем самым, выигрывая время в решении задачи.
2). Последовательность действий, направленных на поиск ответа, позволяет контролировать и проверять промежуточные результаты. Необходимость раскрытия модуля, что для некоторых заданий приводит к потере темпа в получении ответа.

Метод интервалов Самый эффективный способ, так как сопровождается относительно небольшим объемом работы. В силу необходимости нахождения концов интервалов может возникнуть ситуация, когда соответствующее уравнение либо вызывает серьезные затруднения при определении корней, либо недоступно ученику на данном этапе обучения.
Графический метод Данный способ имеет очень широкое применение в других темах школьного курса математики. Ответ определяется приблизительно.
Метод решения при помощи зависимостей между числами, их модулями и квадратами этих чисел В некоторых случаях применение данного способа позволяет решать уравнения определенного вида на более раннем этапе. В некоторых случаях выбор данного способа приводит к громоздкому решению, а иногда решение сводится к уравнению, недоступному для ученика на данном этапе обучения.
Геометрическая интерпретация модуля Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений. Применение данного способа ограничивается уравнениями определенного вида.

Проанализировав достоинства и недостатки каждого из указанных способов, можно с уверенностью сказать, что на мотивационном этапе формирования умения решать уравнения с модулем ученикам следует показывать все, доступные на данном этапе обучения способы решения, и, главное, на конкретных примерах доказывать, что первый этап решения – выбор самого эффективного способа.

1. Рассмотрим пример |х2+4х+3|=|х2-3|.
Решим это уравнение методом интервалов. Для этого найдем концы интервалов, решив уравнения х2+4х+3=0 и х2-3=0. В результате х1= -1, х2= -3, х3= , х4= — . Видим, что первое уравнение – квадратное, поэтому его решение недоступно ученику седьмого класса, впрочем, также как и второе уравнение, для решения которого необходимо знание арифметического квадратного корня. Кроме того, отметив полученные числа на координатном луче, получим пять промежутков, в каждом из которых, предварительно сняв знак модуля необходимо опять решить квадратное уравнение.
Если же использовать четвертый способ (метод решения при помощи зависимостей между числами, их модулями и квадратами этих чисел), то это уравнение можно решить на более раннем этапе. Итак,
|х2+4х+3|=|х2-3| х2+4х+3=х2-3 или х2+4х+3= -х2+3.
х1= -1,5; х2=0; х3= -2.
Ответ: -1,5; -2; 0.
Ясно, что способ решения при помощи зависимостей между величинами, их модулями и квадратами величин, является самым эффективным для решения этого уравнения.

2. Рассмотрим пример |х-7|-|х-8|=1.
Решим это уравнение двумя способами.
а) метод интервалов: Найдем концы интервалов: х=7 и х=8. Отметим эти числа на координатной прямой, а затем решим уравнение в каждом из получившихся промежутков:
-х+7+х-8=1, х-7+х-8=1, х-7-х+8=1,
-1≠1, 2х=16, 1=1,
х=8 х – любое число
Ответ: [8;+∞).
б) использование геометрической интерпретации. Использование равносильных переходов, вытекающих из геометрической интерпретации, позволяют сразу найти ответ: [8;+∞).

3. Рассмотрим пример |(х-1)(х-3)|=х-3.

Это уравнение можно решить тремя способами.
а) последовательное раскрытие модуля:
Если (х-1)(х-3) ≥ 0, то Если (х-1)(х-3) < 0, то
х2-4х+3=х-3, х2-4х+3= -х+3,
х2-5х+6=0, х2-3х=0,
х1=3, х2=2. х1=0, х2=3.
2 – не удовлетворяет условию. 0, 3 — не удовлетворяет условию.
Ответ: 3.
б) метод интервалов: найдем концы интервалов, решив уравнение (х-1)(х-3)=0, откуда х1=1, х2=3.

(х-1)(х-3)=х-3, -(х-1)(х-3)=х-3, (х-1)(х-3)=х-3,
х1=2, х2=3. х1=0, х2=3. х1=2, х2=3.
2 (-∞; 1), 0 [1; 3). 2 [3; +∞).
3 (-∞; 1).
Ответ: 3.
в) графический метод: для решения уравнения построим в одной системе координат графики функций у=|х2-4х+3| и у=-3.
Построим у=|х2-4х+3|. Для этого сначала рассмотрим функцию у=х2-4х+3, графиком которой является парабола, ветви направлены вверх. Вершина параболы в точке (2; -1). Строим график и отображаем часть параболы, которая лежит ниже оси ОХ в верхнюю полуплоскость. Далее в этой же системе координат строим график у=х-3. Графики функций пересеклись в точке с абсциссой 3.
Ответ: 3. Завершая рассмотрение различных способов решения уравнений, содержащих знак модуля, еще раз отметим тот важный факт, что ни один из них не является универсальным и для получения наилучших результатов необходимо добиваться того, чтобы ученик овладел возможно большим количеством методов решения, оставляя право выбора решения за собой.
Таким образом, можно сделать следующий вывод: систематическое использование различных способов для решения уравнений, содержащих абсолютную величину, приводит не только к повышению интереса к математике, повышению творческой активности школьников, но и повышает уверенность детей в собственных силах, так как у них имеется возможность выбора того способа решения, который наиболее эффективен в каждом конкретном случае.

ПРИЛОЖЕНИЕ.

ТЕСТОВЫЕ ЗАДАНИЯ по теме «Решение уравнений с модулем».
1. Какие числа являются решениями уравнения |х+3|= -4?
а) -7; б) -7; 1; в) нет корней; г) 1.
2. Решите уравнение |х+3|=7:
а) 7; б) -7; в) 0; 7; г) 7; -7.
3. Определите координаты точки пересечения графиков функций у=|2х+1| и у=0:
а) (0;0); б) (-0,5;0); в) (0;-0,5); г) (0,5;0).
4. Решите уравнение |х+3|+|х-1|=6:
а) 3; -2; б) 4; -2; в) -4; 2; г) 2; -3.
5. Сколько точек пересечения имеют графики функций у=||5,5х-4|+2| и у=3?
а) 1; б) 2; в) 3; г) 4.
6. Решите уравнение |3х-7|=1-х:
а) 2; 3; б) -2; 3; в) -3; 2; г) -2; -3.
7. Сколько решений имеет уравнение (2,5х-5)2=(0,5х-6)2:
а) 1; б) 2; в) 3; г) 4.

СИСТЕМА КАРТОЧЕК-ЗАДАНИЙ по теме «Решение уравнений с модулем».
1. ЗАДАНИЯ С УКАЗАНИЯМИ ИЛИ АЛГОРИТМИЧЕСКИМИ ПРЕДПИСАНИЯМИ И ОБРАЗОМ ВЫПОЛНЕНИЯ.
УКАЗАНИЯ ОБРАЗЕЦ ЗАДАНИЕ
Если |х-а|+|х-в|=в-а, где в ≥ а, то
а ≤ х ≤ в
|х-1|+|х-2|=1,
1 ≤ х ≤ 2.
Ответ: [1; 2]
а) |х-4|+|х-5|=1,
б) |х|-|х-1|=1,
в) |х-6|+|х-8|=2,
г) |х-0,5|-|х-4,5|=4.

Если |х-а|-|х-в|=в-а, где в ≥ а, то
х ≥ в
|х-1|-|х-2|=1,
х ≥ 2.
Ответ: [2; +∞).

АЛГОРИТМ ОБРАЗЕЦ ЗАДАНИЯ
1. Отметить все нули подмодульных выражений на числовой прямой. Они разобьют числовую прямую на промежутки, в которых все подмодульные выражения имеют постоянный знак.
2. Из каждого промежутка взять произвольное число и подсчетом определить знак подмодульного выражения, по знаку раскрыть модули.
3. Решить уравнения и выбрать решения, принадлежащие данному промежутку. |х+1|+|х+2|=1.
Решение.
Подмодульные выражения х+1 и х+2 обращаются в нуль при х= -1, х= -2.

1) -3 (-∞; -2]
-х-1-х-2=1; х= -2;
-2 (-∞; -2].
2) -1,5 (-2; -1)
-х-1+х+2=1; 1=1; х — любое число из промежутка (-2; -1).
3) 0 [-1; +∞)
х+1+х+2=1; х= -1;
-1 [-1; +∞).
Ответ: [-2; -1].
1) |14-х|+|х+1|=7;
2) |х|-|х+2|=2;
3) |х2-4|=|2х-1|;
4) | х2-6х+5|+|3-х|=3

2. ЗАДАНИЯ «НАЙДИ ОШИБКУ».
1.
Решить уравнение: |х2-8х+5|=| х2-5|.
Решение.
|х2-8х+5|=| х2-5|
х2-8х+5= х2-5, или х2-8х+5=5- х2,
-8х+10=0, 2 х2-8х=0,
х=1,25. х(2х-8)=0,
х=0, или 2х-8=0,
2х=8,
х=0,25.
Ответ: 1,25; 0,25. ВЕРНОЕ РЕШЕНИЕ

2.
Решить уравнение х2-6х+|х-4|+8=0.
Решение.
Если х-4 ≥ 0, то Если х-4 < 0, то
х2-6х+х-4+8=0, х2-6х-х+4+8=0,
х2-5х+4=0, х2-7х+12=0,
х1=4, х2=1. х1=4, х2=3.
1 — не удовлетворяет условию. Оба корня удовлетворяют
условию.
Ответ: 1; 3; 4. ВЕРНОЕ РЕШЕНИЕ

3.
Решить уравнение |х-1|-2|х+3|+х+7=0.
Решение.
Решим уравнение методом интервалов, для этого найдем концы интервалов, решив уравнения
х-1=0 и х+3=0
х=1 х= -3.

-х+1-2(-х-3)+х+7=0; -х+1-2х-6+х+7=0; х-1-2х-6+х+7=0;
2х+14=0; -2х+2=0; 0=0.
х= -7. х=1. х — любое число.
Ответ: х – любое число. ВЕРНОЕ РЕШЕНИЕ

3. ЗАДАНИЯ С СОПУТСТВУЮЩИМИ УКАЗАНИЯМИ И ИНСТРУКЦИЯМИ.
1.
Решить уравнение |х-2|+|2х-7|=3.
Решение.
Решим уравнение методом интервалов.
1) Найдите нули подмодульных выражений, решив уравнения:
х-2=0 и 2х-7=0.
х1=… х2=…
2) Отметьте полученные значения на координатном луче.

3) Решите исходное уравнение на каждом из интервалов, предварительно определив знак подмодульного выражения. Учитывая знак, раскрыть модули.

4) Проверьте, принадлежат ли найденные корни указанным промежуткам.
Ответ: …………………………………………………….

2.
Решить уравнение ||х-3|-х+1|=6.
Решение.
1) Раскройте внешний модуль, используя определение: |а|=а, если а ≥ 0 и
|а|= -а, если а < 0.
……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
2) Перенесите слагаемые, не содержащие знак модуля, в правую часть уравнения и решите каждое из полученных уравнений методом последовательного раскрытия модуля.
………………………………………………………………………………….
………………………………………………………………………………….
………………………………………………………………………………….
3) Проверьте, удовлетворяет ли найденный корень указанному условию.
…………………………………………………………………………………
…………………………………………………………………………………
Ответ: …………………………………………………….

4. ЗАДАНИЯ С ПРИМЕНЕНИЕМ КЛАССИФИКАЦИИ.
1.
Выпишите уравнения, которые решаются с помощью зависимостей между величинами, их модулями и квадратами величин. Решите эти уравнения.
1) ||х|+3|=3;
2) |х|+|х+4|=х-1;
3) |х+2|=|3-х|;
4) |х+3|+|х-1|=7;
5) (2х-3)2=(3,5х-1)2;
6) |х2-4х+5|=|х2-9|;
7) |11х-7|= -3;
8) |х-2|+|х-1|=1;
9) х2-х-2=|5х-3|;

2.
Выпишите уравнения, которые решаются с использованием геометрической интерпретации модуля. Решите эти уравнения.
1) |х|-|х-8|=2;
2) |х2-2х-3|=3х-3;
3) |2х-|2х-|2х-3|||=0;
4) |х-1|-2|х+4|+х+11=0;
5) |х-3|+|х-4|=1;
6) (5х-4)2=(2х-1)2;
7) |2,5х-11|= -2;
8) |х-7|-|х-9|=2.

5. ЗАДАНИЯ С ВЫПОЛНЕНИЕМ НЕКОТОРОЙ ЧАСТИ.
1.
Решить уравнение (х2-5х+6)2-5•| х2-5х+6|+6=0.
Решение.
Пусть | х2-5х+6|=t, тогда, учитывая, что (х2-5х+6)2=| х2-5х+6|2, получим уравнение: t2-5t+6=0. Решением этого уравнения являются числа …….., поэтому исходное уравнение равносильно совокупности двух уравнений:
| х2-5х+6|=… или | х2-5х+6|=…
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………

Ответ: ………………..

2.

Решите уравнение =1.
Решение.
Исходное уравнение равносильно совокупности двух уравнений:
=1 или = -1.
ОДЗ: ≠ 0;
……………………………………………………………………………………………….
………………………………………………………………………………………………
х2-х-14= х2-5х+6; или х2-х-14= -(х2-5х+6);
…………………………………………………………………………………
…………………………………………………………………………………
Ответ: ……………………………..

ПРОВЕРОЧНАЯ РАБОТА по теме «Решение уравнений с модулем»
1. Решите уравнение |х-3|=7.
2. Решите графически уравнение |2х+1|=3.
3. Решите уравнение методом интервалов |х+1|+|х-1|=3.
4. Решите уравнение методом последовательного раскрытия модулей |-х+2|=2х+1.
5. Решите уравнение (2х+3)2=(х-1)2.
6. Решите уравнение самым удобным способом |х2+6х+2|=3|х+2|.
7. При каком значении а уравнение можно решить, используя геометрическую интерпретацию модуля: |х-а|+|х-9|=1?
8. Решить уравнение =1. (*)

 

www.uchportal.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.